

HDY-003-016303 Seat No. _____

M. Sc. (Sem. III) (CBCS) Examination

November / December - 2017

Mathematics: 3003

(Number Theory 1)

(Old Course)

Faculty Code: 003 Subject Code: 016303

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70

Instructions:

- (1) There are 5 questions in this paper.
- (2) All questions are compulsory.
- (3) Each question carries 14 marks.
- 1 Fill in the blanks: (Each question carries 2 marks)

 - (ii) If p and q are distinct primes then $p^m q^n$ has positive divisors. $(m, n \in \mathbb{N})$
 - (iii) If p is a prime of the form 4k+3 then $x^2+1 \equiv 0 \pmod{p}$ has solutions.
 - (iv) If p is a prime number and n a positive integer then the number of positive divisors of $p^n = \dots$
 - (v) If $n = 200 \times 202$ then $\emptyset(n) = ...$
 - (vi) If p is a prime number and p does not divide a then $a^{p-1} \equiv 1 \pmod{p}$. This theorem is called theorem.
 - (vii) If m divides ab and m and a are relatively prime then $b \equiv \dots \pmod{m}$.
- 2 Attempt any two:
 - (i) Prove that any integer > 1 can be uniquely expressed as a product of primes.
 - (ii) Write the statement of division algorithm and prove it.
 - (iii) State and prove Euler's theorem.

- 3 All are Compulsory:
 - (i) Find the smallest positive integer x such that the remainder is 10 when it is Divided by 11, the remainder is 12 when it is divided by 13 and the remainder is 6 when it is divided by 7.
 - (ii) Find all solutions of $x^2 \equiv 1 \pmod{15}$
 - (iii) If $n \neq 0$, a, x, y are integers then prove that $ax \equiv ay \pmod{m}$ if and only if $x \equiv y \pmod{\frac{n}{(a,n)}}$.

OR

- 3 All are compulsory:
 - (i) Suppose f(x) is a polynomial with integer coefficients, p is a prime number and $f(x) \equiv 0 \pmod{p}$ has degree n. Prove that $f(x) \equiv 0 \pmod{p}$ has atmost n solutions in any complete residue system(mod p).
 - (ii) First find the solutions of $f(x) \equiv 0 \pmod{3}$, $f(x) \equiv 0 \pmod{5}$, $f(x) \equiv 0 \pmod{7}$ and use them to find all solutions of $f(x) \equiv 0 \pmod{105}$. Here $f(x) = x^4 1$.
- 4 Attempt any two:
 - (i) Determine which of the following have primitive roots and if an integer has a primitive root then find at least two primitive roots: 7, 11, 12 and 35.
 - (ii) If $\alpha \ge 3$ then prove that the set $\{5,5^2,5^3,.....5^{2^{\alpha-2}}\}$ 7 $\cup \{-5,-5^2,-5^3,.....-5^{2^{\alpha-2}}\}$ is a reduced reside system (mod 2^{α}).
 - (iii) Prove that $\sum_{din} \phi(d) = n$, for any positive integer n. 7
- 5 Do as directed: (Each carries 2 marks)
 - (i) Write the statement of mobius inversion formula.
 - (ii) Find the value of \emptyset (36) using mobius inversion formula.
 - (iii) Find the highest power of 11 which divides 2017!.
 - (iv) Find the number of positive divisors of 1660.
 - (v) Find the values of ω (n) for n = 25, 35, 101, 105.
 - (vi) Give an example of a multiplicative function which is not totally multiplicative.
 - (vii) Find \emptyset (n) for n = 150, 307 and 19610.

4

6

7